# Language Modeling 

CSE354 - Spring 2020

## Task



- Language Modeling (i.e. auto-complete)

- Probabilistic Modeling
- Probability Theory
- Logistic Regression
- Sequence Modeling


## Language Modeling

-- assigning a probability to sequences of words.
Version 1: Compute $P(w 1, w 2, w 3, w 4, w 5)=P(W)$
:probability of a sequence of words

## Language Modeling

-- assigning a probability to sequences of words.
Version 1: Compute $P(w 1, w 2, w 3, w 4, w 5)=P(W)$ :probability of a sequence of words

Version 2: Compute $P\left(w 5 \mid w 1, w 2, w 3, w_{4}\right)$

$$
=P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

:probability of a next word given history

## Language Modeling

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$ :probability of a sequence of words $P($ He ate the cake with the fork $)=$ ?

Version 2: Compute $P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$

$$
=P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

:probability of a next word given history $P($ fork | He ate the cake with the $)=$ ?

## Language Modeling

## Applications:

- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say? "eyes aw of an"
(example from Jurafsky, 2017)


## Language Modeling

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$ :probability of a sequence of words $P($ He ate the cake with the fork $)=$ ?

Version 2: Compute $P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$

$$
=P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

:probability of a next word given history $P($ fork | He ate the cake with the $)=$ ?

## Simple Solution

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$ :probability of a sequence of words
$P($ He ate the cake with the fork $)=$

| count(He ate the cake with the fork) |
| :--- |
| $\operatorname{count}\left({ }^{*}\right.$ |
| $*$ |

## Simple Solution: The Maximum Likelihood Estimate

Version 1: Compute $P\left(w 1, w_{2}, w_{3}, w_{4}, w_{5}\right)=P(W)$ :probability of a sequence of words $P($ He ate the cake with the fork $)=$


## Simple Solution: The Maximum Likelihood Estimate

$P($ He ate the cake with the fork $)=$

$P($ fork | He ate the cake with the $)=$
count(He ate the cake with the fork) count(He ate the cake with the *)

## Simple Solution: The Maximum Likelihood Estimate

Problem: even the Web isn't large enough to enable good estimates of most phrases.
$P($ He ate the cake with the fork $)=$

$P($ fork | He ate the cake with the $)=$
count(He ate the cake with the fork) count(He ate the cake with the *)

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$
P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)
$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$
\begin{aligned}
& P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B) \\
& P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)
\end{aligned}
$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule:
$P\left(X_{1}, X_{2}, \ldots, X n\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X 1, X_{2}\right) \ldots P(X n \mid X 1, \ldots, X n-1)$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

Solution: Estimate from shorter sequences, use more sophisticated probability theory.
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$
$P(X 1, X 2, \ldots, X n)=P\left(X_{1}\right) P\left(X_{2} \mid X 1\right) P\left(X_{3} \mid X 1, \stackrel{i=1}{X} 2\right) \ldots P(X n \mid X 1, \ldots, X n-1)$

Markov Assumption:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)
$$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$

$$
P(X 1, X 2, \ldots, X n)=P(X 1) P(X 2 \mid X 1) P(X 3 \mid X 1, \stackrel{i=1}{X} 2) \ldots P(X n \mid X 1, \ldots, X n-1)
$$

Markov Assumption:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)
$$

$P(X n \mid X 1 \ldots, X n-1) \approx P(X n \mid X n-k, \ldots, X n-1)^{i=1}$ where $k<n$

Solution: Estimate from shorter sequences, use more sophisticated probability theory.

$$
P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)
$$

$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$

$$
P(X 1, X 2, \ldots, X n)=P(X 1) P(X 2 \mid X 1) P\left(X_{3} \mid X 1, \stackrel{i=1}{X} 2\right) \ldots P(X n \mid X 1, \ldots, X n-1)
$$



Markov Assumption:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)
$$

$P(X n \mid X 1 \ldots, X n-1) \approx P(X n \mid X n-k, \ldots, X n-1)^{i=1}$ where $k<n$

Unigram Model: $\mathbf{k = 0 ;} \quad P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right)$
$P(B \mid A)=P(B, A) / P(A) \Leftrightarrow P(A) P(B \mid A)=P(B, A)=P(A, B)$
$P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$
The Chain Rule: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i}\right)$
$P(X 1, X 2, \ldots, X n)=P(X 1) P(X 2 \mid X 1) P\left(X_{3} \mid X 1, \stackrel{i=1}{X} 2\right) \ldots P(X n \mid X 1, \ldots, X n-1)$

Markov Assumption: $\quad P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)$ $P(X n \mid X 1 \ldots, X n-1) \approx P(X n \mid X n-k, \ldots, X n-1)^{i=1}$ where $k<n$

## Bigram Model: k=1; <br> $$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}\right)
$$

Example generated sentence:
outside, new, car, parking, lot, of, the, agreement, reached

$$
\begin{aligned}
& P(X 1=\text { "outside", X2="new", X3 = "car", ,...) } \\
& \quad \approx P(X 1=\text { "outside" }) * P(X 2=" \text { "new"|X1 }=\text { "outside }) * P(X 3=" c a r " \mid X 2=" n e w ") ~ * . . .
\end{aligned}
$$

## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


| Istword secoud word Bigram Counts |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ | 1 | want | to | eat | chinese | food | lunch | spend |
| 1 | 5 | 827 | 0 | 9 | 0 | 0 | 0 | 2 |
| want | 2 | 0 | 608 | 1 | 6 | 6 | 5 | 1 |
| to | 2 | 0 | 4 | 686 | 2 | 0 | 6 | 211 |
| eat | 0 | 0 | 2 | 0 | 16 | 2 | 42 | 0 |
| chinese | 1 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
| food | 15 | 0 | 15 | 0 | 1 | 4 | 0 | 0 |
| lunch | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| spend | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

## Example from (Jurafsky, 2017)

Training Corpus

## first word $\mid$ second word <br> Bigram Counts

|  | i | want | to | eat | chinese | food | lunch | spend |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 5 | 827 | 0 | 9 | 0 | 0 | 0 | 2 |  |  |  |  |  |  |  |  |  |
| want | 2 | 0 | 608 | 1 | 6 | 6 | 5 | 1 |  |  |  |  |  |  |  |  |  |
| to | 2 | 0 | 4 | 686 | 2 | 0 | 6 | 211 |  |  |  |  |  |  |  |  |  |
| eat | 0 | 0 | 2 | 0 | 16 | 2 | 42 | 0 |  |  |  |  |  |  |  |  |  |
| chinese | 1 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |  |  |  |  |  |  |  |  |  |
| food | 15 | 0 | 15 | 0 | 1 | 4 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| lunch | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| spend | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | i | want | to | eat | chinese | food | lunch | spend |
|  | 2533 | 927 | 2417 | 746 | 158 | 1093 | 341 | 278 |  |  |  |  |  |  |  |  |  |

Training Corpus
(fit, learn)

|  | i | want | to | eat | chinese | food | lunch | spend |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 5 | 827 | 0 | 9 | 0 | 0 | 0 | 2 |  |  |  |  |  |  |  |  |  |
| want | 2 | 0 | 608 | 1 | 6 | 6 | 5 | 1 |  |  |  |  |  |  |  |  |  |
| to | 2 | 0 | 4 | 686 | 2 | 0 | 6 | 211 |  |  |  |  |  |  |  |  |  |
| eat | 0 | 0 | 2 | 0 | 16 | 2 | 42 | 0 |  |  |  |  |  |  |  |  |  |
| chinese | 1 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |  |  |  |  |  |  |  |  |  |
| food | 15 | 0 | 15 | 0 | 1 | 4 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| lunch | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| spend | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | i | want | to | eat | chinese | food | lunch | spend |
|  | 2533 | 927 | 2417 | 746 | 158 | 1093 | 341 | 278 |  |  |  |  |  |  |  |  |  |

Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$

## $P(X i \mid X i-1)$

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 0.002 | 0.33 | 0 | 0.0036 | 0 | 0 | 0 | 0.00079 |
| want | 0.0022 | 0 | 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011 |
| to | 0.00083 | 0 | 0.0017 | 0.28 | 0.00083 | 0 | 0.0025 | 0.087 |
| eat | 0 | 0 | 0.0027 | 0 | 0.021 | 0.0027 | 0.056 | 0 |
| chinese | 0.0063 | 0 | 0 | 0 | 0 | 0.52 | 0.0063 | 0 |
| food | 0.014 | 0 | 0.014 | 0 | 0.00092 | 0.0037 | 0 | 0 |
| lunch | 0.0059 | 0 | 0 | 0 | 0 | 0.0029 | 0 | 0 |
| spend | 0.0036 | 0 | 0.0036 | 0 | 0 | 0 | 0 | 0 |


| i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2533 | 927 | 2417 | 746 | 158 | 1093 | 341 | 278 |

Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(\mathrm{Xi}-1)$

## second word (Xi) $\quad \mathbf{P ( X i} \mid \boldsymbol{X i} \mathbf{- 1})$ <br> second word (Xi) $\quad \boldsymbol{P}(\boldsymbol{X i} \mid \boldsymbol{X i} \mathbf{- 1})$ <br> first word(Xi-1)



Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(\mathrm{Xi}-1)$


## Language Modeling

Building a model (or system / API) that can answer the following:


T Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(X i-1)$

## Language Modeling

Building a model (or system / API) that can answer the following:
a sequence of
natural language


How common is this sequence?

What is the next word in the conionnos?
Trigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1} P\left(X_{i} \mid X_{i-2}, X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1, X i-2)=\operatorname{count}(X i-2 X i-1 X i) / \operatorname{count}(X i-2 X i-1)$
${ }_{\mathrm{T}}$ Bigram model: $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod P\left(X_{i} \mid X_{i-1}\right)$
Need to estimate: $P(X i \mid X i-1)=\operatorname{count}(X i-1 \mathrm{Xi}) / \operatorname{count}(\mathrm{Xi}-1)$

## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


## Language Modeling

Building a model (or system / API) that can answer the following:


## Evaluation



## Evaluation



## Evaluation



## Coding Example: Modeling Tweets from POS data

1. Count unigrams, bigrams, and trigrams
2. Train probabilities for unigram, bigram, and trigram models (over training)
3. Generate language

Trigram model when good evidence (high counts) Backing off to bigram or even unigram

## Coding Example: Modeling Tweets from POS data

## Practical Considerations:

- Use log probability to keep numbers reasonable and save computation. (uses addition rather than multiplication)
- Out-of-vocabulary (OOV)

Choose minimum frequency and mark as <OOV>

- Sentence start and end: <s> this is a sentence </s>


## Zeros and Smoothing

| $\text { first } \operatorname{word}(X i-1) \backslash$ |  |  |  | $P(X i \mid X i-1)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | i | want | to | eat | chinese | food | lunch | spend |
| 1 | 0.002 | 0.33 | 0 | 0.0036 | 0 | 0 | 0 | 0.00079 |
| want | 0.0022 | 0 | 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011 |
| to | 0.00083 | 0 | 0.0017 | 0.28 | 0.00083 | 0 | 0.0025 | 0.087 |
| eat | 0 | 0 | 0.0027 | 0 | 0.021 | 0.0027 | 0.056 | 0 |
| chinese | 0.0063 | 0 | 0 | 0 | 0 | 0.52 | 0.0063 | 0 |
| food | 0.014 | 0 | 0.014 | 0 | 0.00092 | 0.0037 | 0 | 0 |
| lunch | 0.0059 | 0 | 0 | 0 | 0 | 0.0029 | 0 | 0 |
| spend | 0.0036 | 0 | 0.0036 | 0 | 0 | 0 | 0 | 0 |

## Zeros and Smoothing

|  | i | want | to | eat | chinese | food | lunch | spend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | 5 | 827 | 0 | 9 | 0 | 0 | 0 | 2 |
| want | 2 | 0 | 608 | 1 | 6 | 6 | 5 | 1 |
| to | 2 | 0 | 4 | 686 | 2 | 0 | 6 | 211 |
| eat | 0 | 0 | 2 | 0 | 16 | 2 | 42 | 0 |
| chinese | 1 | 0 | 0 | 0 | 0 | 82 | 1 | 0 |
| food | 15 | 0 | 15 | 0 | 1 | 4 | 0 | 0 |
| lunch | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| spend | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

Laplace ("Add one") smoothing: add 1 to all counts

## Zeros and Smoothing

first word I second word

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 6 | 828 | 1 | 10 | 1 | 1 | 1 | 3 |
| want | 3 | 1 | 609 | 2 | 7 | 7 | 6 | 2 |
| to | 3 | 1 | 5 | 687 | 3 | 1 | 7 | 212 |
| eat | 1 | 1 | 3 | 1 | 17 | 3 | 43 | 1 |
| chinese | 2 | 1 | 1 | 1 | 1 | 83 | 2 | 1 |
| food | 16 | 1 | 16 | 1 | 2 | 5 | 1 | 1 |
| lunch | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
| spend | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |

Laplace ("Add one") smoothing: add 1 to all counts

## Unsmoothed probs

first word(Xi-1) ${ }^{\text {second word (Xi) }} \boldsymbol{P ( X i | X i - 1 )}$

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 0.002 | 0.33 | 0 | 0.0036 | 0 | 0 | 0 | 0.00079 |
| want | 0.0022 | 0 | 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011 |
| to | 0.00083 | 0 | 0.0017 | 0.28 | 0.00083 | 0 | 0.0025 | 0.087 |
| eat | 0 | 0 | 0.0027 | 0 | 0.021 | 0.0027 | 0.056 | 0 |
| chinese | 0.0063 | 0 | 0 | 0 | 0 | 0.52 | 0.0063 | 0 |
| food | 0.014 | 0 | 0.014 | 0 | 0.00092 | 0.0037 | 0 | 0 |
| lunch | 0.0059 | 0 | 0 | 0 | 0 | 0.0029 | 0 | 0 |
| spend | 0.0036 | 0 | 0.0036 | 0 | 0 | 0 | 0 | 0 |

## Smoothed

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

first word(Xi-1) $\left.\right|^{\text {second word (Xi) }} \quad \boldsymbol{P}(\boldsymbol{X} \mathbf{i} \mid \boldsymbol{X i} \mathbf{i} \mathbf{1})$

|  | i | want | to | eat | chinese | food | lunch | spend |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| i | 0.0015 | 0.21 | 0.00025 | 0.0025 | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want | 0.0013 | 0.00042 | 0.26 | 0.00084 | 0.0029 | 0.0029 | 0.0025 | 0.00084 |
| to | 0.00078 | 0.00026 | 0.0013 | 0.18 | 0.00078 | 0.00026 | 0.0018 | 0.055 |
| eat | 0.00046 | 0.00046 | 0.0014 | 0.00046 | 0.0078 | 0.0014 | 0.02 | 0.00046 |
| chinese | 0.0012 | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052 | 0.0012 | 0.00062 |
| food | 0.0063 | 0.00039 | 0.0063 | 0.00039 | 0.00079 | 0.002 | 0.00039 | 0.00039 |
| lunch | 0.0017 | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011 | 0.00056 | 0.00056 |
| spend | 0.0012 | 0.00058 | 0.0012 | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

## Why Smoothing? Generalizes

Original


With Smoothing
(Example from Jurafsky / Originally Dan Klein)


## Why Smoothing? Generalizes

Add-one is blunt: can lead to very large changes.

More Advanced:
Good-Turing Smoothing


Kneser-Nay Smoothing
These are outside scope of course because we will eventually cover, even stronger, deep learning based models.



## Why Smpat - -2 <br> What about Logistic Regression? $\mathrm{Y}=$ next word $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{P}(\mathrm{Xn} \mid \mathrm{Xn}-1, \mathrm{Xn}-2, \mathrm{Xn}-3, \ldots)$ <br> Not a terrible option, but Xn-1 through Xn-k would be modeled as independent dimensions. Let's revisit later. Could use: <br> P(Xn | Xn-1, [Xn-1 Xn-2], [Xn-1 Xn-2 Xn-3], ...)

## Language Modeling Summary

- Two versions of assigning probability to sequence of words
- Applications
- The Chain Rule, The Markov Assumption: $\quad P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-k}, X_{i-(k-1)}, \ldots, X_{i}\right)$
- Training a unigram, bigram, trigram model based on counts
- Evaluation: Perplexity
- Zeros, Low Counts, and Generalizability
- Add-one smoothing

